Aller au contenu
Posté(e)
comment_17522

Bjr,

Voilà je prog une feuille excel pour me permettre de calculer la stabilité des fondations, hors dans ce calcul je dois vérifier différents pourcentages de contrainte positive sous la surface de la fondation. Je calcule bien les contraintes dans chaques angles de ma semelle mais je ne sais pas comment faire calculer à excel la surface de ma fondation comprimée.

D'un point de vue mathématique, j'ai un rectangle coupé par un plan dont je connais les coordonnées aux 4 angles du rectangle et je veux calculer l'air d'une des 2 surfaces formées par la coupure.

Qu'en pensez-vous?

Voir dessin pour éclaicir le probleme

  • Réponses 7
  • Vues 5k
  • Créé
  • Dernière réponse

Meilleurs contributeurs dans ce sujet

recommended_posts

comment_17557

Bonjour goujon,

Je crois que vous faites erreur dans la mesure où vous utilisez les formules de la RDM pour un matériau homogène pouvant résister aussi bien à la compression qu à la traction; or le sol n est pas dans ce cas de figure puisque sa résistance en traction est nulle. Donc vos formules ne sont pas appropriées et peuvent être dangereuses pour justifier la stabilité.

Salutations

  • Auteur
comment_17589

Effectivement on s'est mal compris. Je cherche juste à calculer la surface comprimée de ma fondation car je dois vérifier aux "ELS de non soulèvement" que 100% de la sous face de la fondation reste comprimée, aux "ELU de renversement" il reste au minimum 10% de surface comprimée.

Mon objectif est donc bien de connaitre à partir du diagramme de contraintes le pourcentage de surface de la fondation restant comprimée.

C'est de la géométrie simple mais je ne sais pas comment le traiter sous excel.

comment_17617

Bonjour goujon,

Je suppose que vous calculez suivant le fascicule 62 titre V, je réitère ce que j ai dit précédemment: vous faites fausse route si vous utilisez les formules de RDM, car le sol ne résiste pas à la traction, voir l article B2.2,1 : pour le calcul des contraintes et de la surface comprimée le plus simple est d adopter le modèle de Meeyerhof indiqué dans ce même article.

Salutations

  • Auteur
comment_17635

Je comprends ton raisonnement mais je vois les choses autrement:

Le modèle de Meyerhof permet la vérification de l'article B.3.1, état limite de mobilisation du sol, en donnant une approche sécuritaire de la valeur maxi de la contrainte de compression mais ne peut être employé pour les articles B.3.2, B.3.3 car la moindre excentricité génère un rectangle de contrainte inférieure à la surface totale de la fondation ce qui a pour conséquence de ne jamais pouvoir vérifier B.3.3.(Surface entièrement comprimèe aux ELS) Si l'on mène un calcul de diagramme de contrainte suivant un modèle RDM sigma=N/a+Mx*v/Iy+My*v/Ix on est en mesure de vérifier la fondation, car si la résultante des efforts appliqués à la fondation se trouve dans le tiers central la sous-face de la fondation est entièrement comprimée.

Après peut-être que je me trompe sur l'application de la théorie de la RDM sur un cas de fondation mais je ne tiens pas compte de l'effort de traction, je regarde uniquement la zone avec une contrainte de compresssion. Si je te comprends bien tu considère que le calcul de contrainte suivant la RDM n'est pas applicable sur un matériau tel qu'un sol.

Slt

comment_17642

Bonjour goujon,

Si je te comprends bien tu considère que le calcul de contrainte suivant la RDM n'est pas applicable sur un matériau tel qu'un sol

voila, c est exactement cela dés que l excentricité est en dehors du tiers central !

la formule RDM :

sigma=N/a+Mx*v/Iy+My*v/Ix
n est valable que si toute la surface est comprimée, si vous l utilisez en dehors du tiers central , c est à dire si vous obtenez des tractions, c est faux ! et de plus dangereux ...

il ne sert donc à rien de calculer la surface comprimée avec cette formule, vous devez utiliser la méthode d un matériau ne résistant pas à la traction.

Salutations

comment_17660

Salut Goujon,

Je poste ci-dessous un article des annales de l'ITBTP qui te sera certainement très utile pour ton programme.

Sont traitées les différentes méthodes (meyerhof, navier, et méthode de l'ancienne version de l'EC2 (je crois que c'était au stade ENV de l'eurocode, voire antérieur. Aujoud'hui, tout ce qui n'est pas béton a été enlevé de l'EC2)), y compris dans le cas d'un chargement biaxial avec moment selon Mx et My-. C'est le plus compliqué.

Si tu te lances dans la programmation de la méthode de navier dans le cas du chargement biaxial, tu auras 1 ou 2 systèmes d'équations non linéaires à résoudre !! 44.gif

Si tu ne veux pas te lancer dans la programmation en VBA d'une méthode de résolution type dychotomie ou autre, je te conseille le solver d'excel que tu peux lancer et contrôler depuis le VBA (tape sur google: excel, solver, vba)

Tu tomberas sur des sites avec des tutorials qui te seront utiles pour programmer le solver.

Il y a des sites qui disent que le solver d'excel est très mauvais pour les calculs numériques (en cherchant tu tomberas sur des sites très critiques, qui disent que dans certains cas le solver renvoit des résultats discutables, mais peut-être que leur jugement est biaisé parce que c'est un programme de Micro$oft), mais bon, si tu ne l'utilises pas pour lancer des fusées, cela devrait suffire.

Tiens nous au courant de l'avancée de ton programme (et pourquoi pas poster la feuille de calcul une fois terminée 3.gif)

Et si tu veux de l'aide, pose tes questions ici !!

Bon courage.

  • Auteur
comment_17721

Merci Gilberto,

je regarde ça et je tiens le poste au courant.

Pas d'inquiétude si je suis un peu lent, je rentre dans une phase de travail avec un planning un peu lourd.

A bientôt.

Rejoindre la conversation

Vous pouvez publier maintenant et vous inscrire plus tard. Si vous avez un compte, connectez-vous maintenant pour publier avec votre compte.
Remarque: votre message nécessitera l’approbation d’un modérateur avant de pouvoir être visible.

Invités
Répondre à ce sujet…